

Control Con

Country profile (2022)

- >250K diarrheal disease hospitalisations & >20M cases
- >35K people died of diarrheal diseases
- Causes 7% of all deaths in children less than 5 years old
- 99K AMR associated deaths
- Documented presence of multidrug-resistant pathogens (resistant to >2 antibiotic groups) in clinical, public- and one-health settings.

GenomicsDAM - Leadership Team

icddr,b (Bangladesh)

LSHTM (UK)

Dr. Dinesh Mondal Clinical microbiology and parasitology. Leads research projects in infectious diseases, involving multidisciplinary teams.

Uses WGS to understand pathogen AMR.

Dr. Mustafizur Rahman Head of the Genomics Centre. Microbiologist with vast experience in WGS of bacteria and viruses from clinical and environmental samples.

Faria Hussein

Research investigator with expertise in microbiology and molecular biology, applied to the area of maternal and child nutrition.

Professor Taane G. Clark

Genomic epidemiology of infectious diseases using cutting-edge WGS, bioinformatics, phylogenetics, and AI. >325 publications, >£30M funding.

Professor Susana Campino

Genomics of infectious diseases, including the development of methods to sequence micro-organisms from clinical / environmental samples (WGS/Amp-Seq).

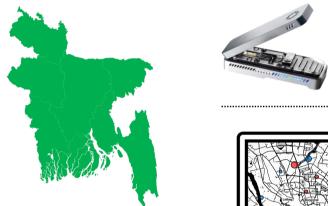
Dr. Jody Phelan

Computational biology, bioinformatics, and software development, including tools to profile pathogens using sequence data (e.g., TB-Profiler)

Working groups Clinical & microbiology, Genomics & Informatics, and Community & Stakeholder engagement

External advisory group (to be established) Experts in genomics, IT, infectious diseases, business and policy development

The GenomicsDAM partnership



Objective 1

Collection of clinical and community samples for AMR personalised medicine and surveillance.

Objective 2

Development and deployment of whole genome (WGS) and targeted amplicon (Amp-Seq) sequencing and analysis pipelines.

Objective 4

Capacity strengthening and training in genomics investigations, bioinformatics and data analysis.

Objective 3

Implementation of GIS dashboard for real-time AMR tracking, including to inform public health interventions and citizen science activities.

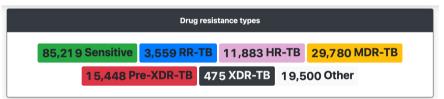
			Ye	ear 1			Ye	ear 2			Ye	ear 3	
Site	Task	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Ţ
	Clinical sample collection						•				•		
Objectives	Targeted community sampling	-											Ç
Objectives	WGS and Amp-Seq, and analysis												
	GIS dashboard implementation)							
T	WGS and Amp-Seq analysis training))			
Training and	GIS dashboard training)						
meetings	Annual updates meeting))			С

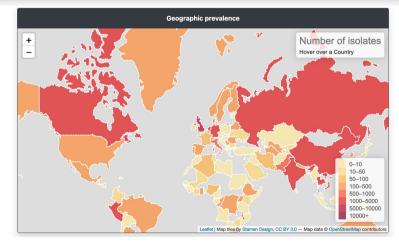
Objective 1 Objective 2 Objective 3 Objective 4

TB-Profiler: Sequence-based profiling of Mycobacterium tuberculosis

Features such as **strain type**, **AMR class** and **sequence quality control** metrics are calculated for each submitted sample.

Summary
Run ID: a38170de-b43c-472f-8ad2-4f986f29146e
Sample name:
Date: 2024-02-19T12:17:47.068024
Number of reads: 659338
Percentage reads mapped: 98.61
Median coverage: 38.0
Strain: lineage4.3.4.2
Spoligotype: 777777607760400
Drug-resistance: MDR-TB
Download CSV Download TXT Download JSON


AMR profiles are predicted based on the detection of resistance mutations allowing the determination of an effective treatment regimen.

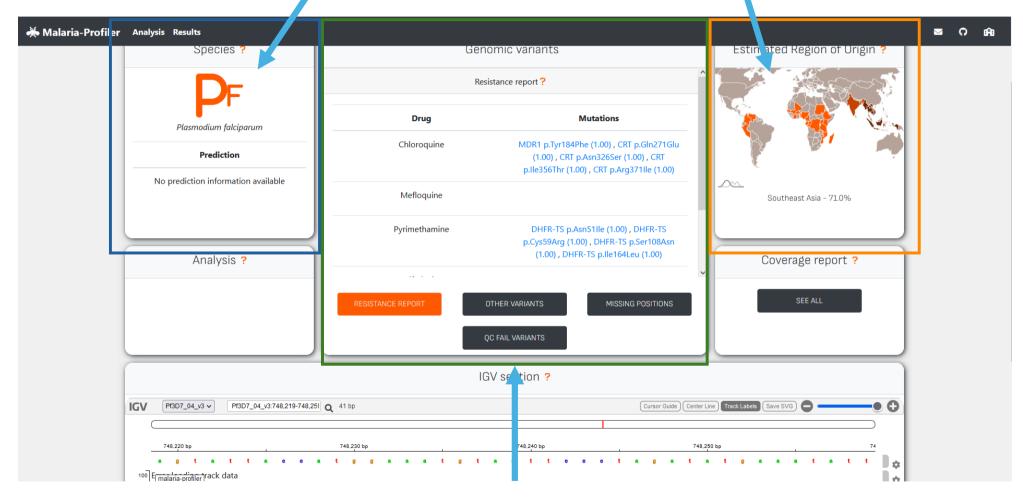

Gene	Chromosome position	Mutation	Туре	Estimated fraction	Drugs	Confidence	Comment
роВ	761155	p.Ser450Leu	missense_variant	1.0	rifampicin	Assoc w R	
nhA	1673425	<u>c777C>T</u>	upstream_gene_variant	1.0	ethionamide	Assoc w R	Alias fabG1_c15C>T
						Assoc w R	Alias fabG1_c15C>T. Low-level resistance (multiple, genetically linked low-level resistance mutations are additive and confer high-level resistance)
ncA	2288868	p.Val125Gly	missense_variant	1.0	pyrazinamide	Assoc w R	
mbB	4247429	p.Met306Val	missense_variant	1.0	ethambutol	Assoc w R	

Interactive visualisation and analysis of WGS data is prioritised, giving the user control.

761,120 bp	761,130 bp	761,140 bp	761,150 bp	761,160 bp	761,170 bp	761,180 bp	761_190 bp
C A A C C C G C T	а т с а а а а т т а			.	CCC00C00T	статсксата	асатасса
a38170de-b43c-47	21-8ad2-4f9						
				Ţ			
				t i i i i i i i i i i i i i i i i i i i			
			_				
				T			

Results are integrated into a large global database of >100,000 TB isolates; allowing **mapping and tracking of AMR pathogens across the world**.

https://tbdr.lshtm.ac.uk


Malaria-Profiler

Species prediction

Plasmodium malaria species is predicted based on a barcode of markers in the mitochondria genome.

Geographic source prediction

The geographic source is predicted using a machine learning model trained on genome-wide mutation data.

Drug resistance mutations

https://bioinformatics.lshtm.ac.uk/ malaria-profiler/

Mutations conferring resistance to anti-malarial drugs are detected using WGS and Amp-Seq data, and then used to determine available effective drugs for treatment.

Phelan J et al. Genome Med. 2023